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In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where
both translational and internal degrees of freedom are present and coupled through microscopic interactions,
with a focus on the manner of themacroscopiccoupling between the two types of degrees of freedom. First,
an unconventional description of the translational degrees of freedom is developed, in which the randomly
varying spatial connectivity of the particles is represented by arandom latticewhose dynamic structure is
given by triangulating the spatial configurations. Based on this random-lattice description, a series of three
statistical-mechanical models are then constructed. All of the three models are in essence spin-1/2 Ising models
where the spins, representing internal degrees of freedom, are associated with hard-disk particles and nearest-
neighbor particles interact through spin-spin interactions that may have spatial dependence. Thefluctuating
number of nearest neighbors and the possible spatial dependence of the spin-spin interactions couple micro-
scopically the spin degrees of freedom to the translational degrees of freedom. The first model~I! is a
random-lattice Ising model with conventional nearest-neighbor spin-spin interactions. The second model~II ! is
an extension of this model to include a spatial dependence of the nearest-neighbor spin-spin interactions. The
third model ~III ! is a modification of the second model that accounts for spin states with different internal
degeneracy. Monte Carlo simulation techniques, including both a special algorithm for the random-lattice
description and histogram and finite-size scaling analysis, are used to investigate the phase behavior of all three
models. It is shown that the order-disorder spin transition in model I is decoupled from a first-order
singularity—lattice melting—associated with the translational degrees of freedom and remains critical and falls
in the universality class of the standard two-dimensional Ising model on regular lattices. Model II is shown to
exhibit a phase diagram that has a region where the spin degrees of freedom are slaved by the translational
degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the
lattice-melting transition. The internal degeneracy of the spin states in model III implies that the spin order-
disorder singularity can be of first order throughout the phase diagram. It is found that this first-order singu-
larity can be either coupled to or decoupled from the lattice-melting singularity, depending on the strength of
the microscopic coupling. The calculated phase diagram and the associated thermodynamic transitional prop-
erties for model III are discussed in relation to experiments on planar bilayers of lipid-chain molecules whose
properties are determined by a subtle coupling between the translational variables and the intrachain confor-
mational states.@S1063-651X~96!01212-3#

PACS number~s!: 02.70.2c, 64.60.Cn, 05.50.1q

I. INTRODUCTION

Ordering phenomena involving both translational and in-
ternal molecular degrees of freedoms are common in am-
phiphilic and liquid-crystal systems@1#. One specific class of
systems involves hydrated bilayers composed of lipids that
are amphiphilic molecules@2#. Each monolayer in a lipid
bilayer constitutes a two-dimensional~2D! condensed sys-
tem of interacting lipid molecules with internal degrees of
freedom corresponding to chain conformational states. It is
well established that a lipid-bilayer system exhibits various
thermodynamic transitions@3#, among which the most
prominent and most studied one is the main phase transition.
It is usually assumed that this thermotropic transition in-
volves two distinct but coupled phase transitions—2D lattice
melting and chain melting—associated with the translational
and chain conformational degrees of freedom, respectively
@3#. In other words, the transition takes the bilayer from a
low-temperature~gel! phase, which is a solid and has~quasi!
long-range translational order and a high degree of confor-

mational order within the lipid chains, to a high-temperature
~fluid or liquid-crystalline! phase, which displays disorder in
both the translational and chain conformational degrees of
freedom.

In a first approximation the main transition in lipid bilay-
ers can be described in terms of simple lattice models, where
each lattice site is assigned a lipid chain with an internal
variable—analogous to an Ising spin variable in the standard
regular-lattice Ising model—representing the conformational
degree of freedom@4# and where neighboring chains interact
in a way that depends on the values of their internal vari-
ables, analogous to Ising-like spin-exchange interactions.
This approach has been quite successful in describing several
essential thermodynamic properties of the main transition
that are mainly related to the chain conformational degrees
of freedom@5#. However, it does not take into consideration
the interplay between the conformational~or internal! and
translational degrees of freedom, an important issue in un-
derstanding the structural properties and thermodynamic be-
havior of the systems. For example, both the surface density
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of the bilayer and the lateral mobility of individual lipid
molecules strongly depend on the chain conformational
states. In several cases, experiments have clearly revealed
manifestations of this interplay. A prominent case is that of
cholesterol, which, when incorporated into a lipid bilayer,
has the ability to uncouple the two distinctly different lattice-
melting and chain-melting processes@6,7#. Although some of
the generic thermodynamics of such an interplay can be de-
scribed by introducing new~somewhat artificial! lattice de-
grees of freedom@8#, more realistic descriptions, especially
of the translational degrees of freedom, are needed. It is one
of the themes of the present work to explore this interplay by
developing an appropriate description, in terms of both
computer-simulation algorithms and microscopic interaction
models, of the translational degrees of freedom and their
coupling to the internal degrees of freedom.

A full microscopic~or first-principles! treatment of trans-
lational degrees of freedom would be ideal. Such a treatment
is, however, very computationally demanding and severely
limits any studies involving translational degrees of freedom
@9#. Consequently, different approximation schemes are usu-
ally employed, depending on the scope of the study. For
example, lattice-gas models are used to describe systems of
interacting particles and gas-liquid transitions. In these mod-
els, the structure and the occupation of lattices account for
the hard-core repulsion, the short-range nature of the mo-
lecular interactions, and the translational entropy. Despite the
simplifications underlying these models, they capture the ge-
neric thermodynamic properties of gas-liquid transitions at
which the full translational invariance of the system is pre-
served. It is necessary to invoke a different kind of approxi-
mation scheme, however, if breaking of translational symme-
try is at issue, as is the case when solid-liquid transitions are
considered.

In the present paper, we have developed a simple descrip-
tion based on the idea of representing microscopic spatial
configurations of many-particle systems by configurations of
a randomly varyingtriangular lattice. Thisrandom-lattice
description is formulated in such a way that it is both ad-
equate for describing collective phenomena manifesting the
interplay between the internal~e.g., lipid chain conforma-
tional! and translational degrees of freedom in a class of
two-dimensional systems and suitable for computer simula-
tions. It is different from conventional lattice descriptions in
that the lattice structure is dynamic~and semi-triangular!: it
can be seen as the result of ‘‘fluidizing’’ aregular triangular
lattice through sampling over nonregular triangular lattice
configurations with a fixed global topology. The global to-
pology is here given by the Euler characteristics of the regu-
lar triangular lattice@10#. The phase space of the translational
degrees of freedom, including both the part that respects the
full translational symmetry, i.e., that corresponding to fluid
phases, and the part that respects the broken symmetry, i.e.,
that corresponding to solid phases, should therefore be well
approximated by this description. Our description is also dif-
ferent from conventional off-lattice descriptions in that it
only provides a restricted phase space: those microscopic
configurations that correspond to large density fluctuations
on short length scales are effectively excluded. This approxi-
mation is, nevertheless, sufficient for describing condensed

fluid phases of systems of hard-core particles with short-
range interactions.

Since our studies on the interplay between internal and
translational degrees of freedom of many-particle systems
have largely been motivated by the collective phenomena
found in lipid-bilayer systems, we naturally see the purpose
of developing the random-lattice description as being two-
fold: ~i! to study the generic thermodynamic behavior of
two-dimensional systems where the two types of degrees of
freedom are present and coupled and~ii ! to model this cou-
pling in a way that is relevant to lipid-bilayer systems. To
this end, we have chosen to study a series of three statistical
mechanical models, which have different emphasis and lev-
els of complexity in describing the microscopic interactions
that govern the interplay of the two types of degrees of free-
dom. All three models are related to systems consisting of
hard-core particles, each carrying a ‘‘spin’’ variable repre-
senting an internal degree of freedom. Interactions between
particles are essentially spin-spin interactions, which are
modeled in the spirit of the conventional Ising model defined
on a regular lattice. Hence all three models are in essence
Ising models defined on the random lattice.

Ising models defined on different types of 2D random
lattices have been subject to considerable attention over the
past years, in particular as model systems involving 2D grav-
ity. Considerable progress was made by the finding of the
exact solution for an Ising model on an unconstrained ran-
dom triangular lattice@11#. It was shown that the critical
behavior of this model is characterized by the critical expo-
nentsa521 andb5 1

2 @11#, which are very different from
those of the universality class of the standard two-
dimensional Ising model (a50 andb5 1

8!. The same results
were also obtained numerically by Monte Carlo simulations
@12#. A different approach was taken in a recent study of an
Ising model on a dynamically generated lattice based on the
spatial proximity of the particles in the plane@13#. In this
study, spins were assigned to hard disks that were allowed to
move in the plane, and in contrast to the random lattice con-
sidered here, the local lattice topology was not fixed. It was
shown that, for condensed systems, the standard 2D Ising-
model behavior was recovered, irrespective of the presence
of full translational invariance@13#. As the hard-disk radius
decreases with respect to the interaction range, the line of
Ising critical~temperature! points was found to terminate at a
tricritical-like point, and it was argued that the special criti-
cal behavior displayed by the Ising model on the uncon-
strained random triangular lattice@11# was again observed at
this point. Beyond the tricritical-like point, the spin order-
disorder transition becomes first order. In comparison with
this work our studies always correspond to the condensed
regime.

It should be noted that 2D random lattices also play a role
in simulation studies of the shapes of fluid membranes,
where the fluidity~or a certain type of randomness! of the
lattice is crucial for the correct description of large-scale
conformational properties of the membranes@14–16#. To a
large extent the numerical dynamic-triangulation procedure
discussed in this paper has been carried over from studies of
fluid membrane conformations. In this respect our study
bears some resemblance to a study of the mechanical prop-
erties of the spectrin network of the red-blood-cell membrane
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by Boal, Seifert, and Zilker@17#.
The paper is organized as follows. Section II gives an

essential account of the random-lattice description in the
context of the Metropolis Monte Carlo simulation algorithm.
Some of the more technical issues are discussed in the Ap-
pendix. Section III describes in considerable detail the vari-
ous two-dimensional models that we have studied. Section
IV presents the simulation results obtained for the different
models and our analysis of those results, along with discus-
sions that rationalize the simulation results and underline the
generic phenomenology of, and physical mechanisms under-
lying, the macroscopic coupling and decoupling between the
translational and internal degrees of freedom. The compari-
son of some of the simulation results with a recent experi-
mental observation of a new phase transition in lipid-bilayer
systems is also given in this section. Section V concludes the
paper with a brief reiteration of the work reported and a
remark on possible further applications of the random-
lattice-model approach we have taken.

II. RANDOM-LATTICE DESCRIPTION

In this section the random lattice is introduced as a basic
representation of the translational degrees of freedom, upon
which the specific microscopic models of Sec. III are con-
structed so as to take into account internal~spin! degrees of
freedom and their coupling to the translational degrees of
freedom. Furthermore, the implementation of the random lat-
tice will be described and discussed as an integral part of the
Monte Carlo simulation methods used in our study, to the
extent that is necessary for understanding the essential fea-
tures of the random-lattice description. Some of the more
technical details of the implementation are relegated to the
Appendix.

The translational degrees of freedom of a 2D many-
particle system are conveniently represented by the planar
coordinates (x,y) of the particles. A particle configuration is
therefore given by$(xn ,yn),n51, . . . ,N%, whereN is the
total number of particles. When dealing with interactions be-
tween particles, the most important information required
concerns the local environment of each individual particle,
such as the distribution of other particles in its neighborhood
and their distances to it. In conventional simulations that
explicitly deal with the translational degrees of freedom, it is
usually one of the most time-consuming steps to obtain and
update this information from the microscopic configurations.
In this section, we describe an algorithm that handles struc-
tural information in a manner that is distinctly different from
conventional off-lattice algorithms and at the same time
achieves high computational efficiency.

A. Algorithm

Our algorithm is a version of the dynamic-triangulation
algorithm used for modeling fluid membranes@18#, adapted
to 2D planar systems of many particles. The algorithm per-
forms two essential tasks:~i! it generates the phase space
associated with the translational degrees of freedom and~ii !
it generates and retains a compact data structure that allows
efficient access to structural information contained in each
microscopic configuration. The data structure is based on
triangulation of each spatial configuration of the particles.

This triangulation is implemented as follows. An ordered
configuration in which the particles are positioned on a regu-
lar triangular lattice is used as an initial state in which each
site is linked to its six nearest neighbors by tethers. The
lattice configuration is then represented by a network of teth-
ers forming triangles; the term ‘‘triangulation’’ refers to this
representation. The phase~or configuration! space can then
be explored through a random updating~or stochastic evolu-
tion! of configurations of the lattice, which consists of three
steps to be described in the following subsections. All these
steps are subject to the standard Metropolis Monte Carlo
~MC! acceptance criterion@19#. According to this criterion,
the probability of accepting an attempted move from a con-
figuration i to a configurationf is given by min~1,Pi f ),
where

Pi f5exp~2DH/kBT!. ~1!

H is an effective Hamiltonian describing microscopic inter-
actions, as given by specific models,DH5Hf2Hi , andkB
is the Boltzmann constant. A detailed description of the mi-
croscopic models studied in the paper will be presented in
Sec. III. We note, however, that in all the models, the short-
range repulsion between particles is modeled as a hard-core
repulsion. Each particle is then considered as a hard disk of
diameterd and every site on the random lattice is occupied
by such a hard-core particle.

1. Particle moves

The first step in the MC updating procedure is the ‘‘par-
ticle move,’’ which is illustrated in Fig. 1. A particle is cho-
sen at random and its center is subject to a random displace-
ment (dx,dy), where

dx5~2zx21!drmax,

dy5~2zy21!drmax. ~2!

zx and zy are random numbers, 0<zx(y)<1. The value of
drmax is adjusted during the simulations so that approxi-
mately 25% of the moves are accepted. Moves that would
result in an overlap of hard disks are always rejected. An-
other constraint is that the length of every tether is not al-
lowed to exceed a maximum valuedmax.

2. Link flip

The second step is referred to as the ‘‘link flip.’’ In each
configuration of the random lattice, each tether~or link! is
one diagonal of a quadrilateral formed by the two adjacent
triangles. In the link flip, a tether is chosen at random; this

FIG. 1. Particle move. The hard disk at positionP is moved to
positionP8.
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tether is either replaced by a tether along the other diagonal
of the quadrilateral if the length of the replacement does not
exceeddmax or kept otherwise. A link flip is illustrated sche-
matically in Fig. 2.

The combination of the particle move and the link flip
makes the lattice ‘‘dynamic’’~or random! in the sense that
its configuration evolves through stochastic variations in
both the local connectivity of the lattice and the real-space
coordinates of the particles. This ensures both particle diffu-
sion across the whole system and fluctuations in local par-
ticle distribution, as required in any description of the trans-
lational degrees of freedom.

In this part of the algorithm, the constraint of maximum
tether length is employed. The reason for employing this
constraint is that the main data structure used in our algo-
rithm describes the position of each individual particle rela-
tive to its tethered neighbors. This is referred to as the ‘‘link
structure.’’ When the tether length is bounded, a one-to-one
mapping can be efficiently established from a given link
structure to a nearest-neighbor structure. One may expect
that this constraint prevents the algorithm from accessing the
entire phase space spanned by the 2D translational degrees
of freedom since those microscopic configurations that cor-
respond to strong short-length-scale fluctuations in the par-
ticle density are not compatible with the constraint. To ad-
dress this issue, we have revisited, using our algorithm, the
system of hard disks, as will be described in Sec. IV.

3. Change of system size

In the constantN-P-T ensemble used here it is necessary
to allow the area of the system to fluctuate. In our simula-
tions this is achieved via a third step in the MC procedure: a
random uniform expansion or contraction of the whole sys-
tem. In this step, a random change in the size of the system
is generated by rescaling the length as

dL5~2z21!dLmax, ~3!

wherez is a random number, 0<z<1, and the coordinates
of all particles and the maximum tether lengthdmax are re-
scaled accordingly.dmax is rescaled in order to allow for a
significant density decrease for low values for the lateral
pressure@20#. If the distance between any two particles after
the rescaling is smaller than the hard-disk diameter, the
change is always rejected. The maximum possible size
changedLmax, is adjusted during the simulation to give an
acceptance ratio of about 50%.

In this MC updating procedure for a change of system
size, the probability of accepting a move from a state with an
areaAi5L2 to a state with an areaAf5(L1dL)2 is deter-
mined by min~1,Pi f ), wherePi f is given by Eq.~1! with H
defined asH5Hmodel1HHD . Hmodel is the model-dependent
microscopic Hamiltonian describing the interactions between
the particles and

HHD5PA2kBTNlnA. ~4!

The first term inHHD represents the energy associated with
the lateral pressureP and the second term reflects the degen-
eracy of a microscopic configuration of 2N translational de-
grees of freedom.

In our simulation, a MC update of the random lattice is
defined as an attempt to move every particle, flip every tether
in the lattice, and ten attempts to change the system size. A
sufficiently large number of the simulation steps then gener-
ates a configuration~phase! space that is characteristic of the
translational degrees of freedom of the system. It is impor-
tant to emphasize that the given HamiltonianHmodel describ-
ing the microscopic interactions between particles is in-
cluded in the acceptance criterion Eq.~1! for all of the three
steps in the MC update for the random lattice.

III. MICROSCOPIC HAMILTONIANS

In this section we present three different models of in-
creasing complexity, referred to in this paper as models I, II,
and III, where the random-lattice description of the non-
interacting hard-disk particle system is extended to include
internal degrees of freedom and microscopic interactions that
couple the internal degrees of freedom to the translational
degrees of freedom. In essence all three models are variants
of the Ising model defined on a regular lattice.

A. Models I and II: Ising models on the random lattice

The 2D spin-1/2 Ising model defined on a regular trian-
gular lattice has a continuous phase transition from a high-
temperature paramagnetic~spin-disordered! phase to a low-
temperature ferromagnetic~spin-ordered! phase at a critical
temperaturekBTC /J053.641, whereJ0 is the exchange in-
teraction between nearest-neighbor spins. We have extended
this standard model in two ways. Our first extension, which
will be referred to as model I, is to associate a spin with each
hard-core particle on the random lattice. Nearest-neighbor
particles are connected by tethers and interact through the
usual Ising spin-spin-exchange interaction. This leads to a
random Ising model in which the number of nearest neigh-
bors is a fluctuating quantity. In this model, the characteristic
interaction range is set by the particle density of the system,
which in turn is controlled by the external pressureP and the
translational and spin degrees of freedom are only coupled
by thefluctuatinglocal connectivity~or the number of near-
est neighbors! of the random lattice. For later reference, we
write down the microscopic interaction Hamiltonian used in
our simulation,

H I52J0 (
^ i, j &

SiSj , ~5!

FIG. 2. Link flip. A tether~shown as thick line! is replaced by
another tether along the diagonal~dashed line! provided that the
length of the replacement does not exceeddmax.
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where ^ i, j & denotes a sum over nearest neighbors con-
nected by tethers andSi561.

In the second extension of the standard Ising model,
which will be referred to as model II, we have modified the
above model in Eq.~5! by introducing a spin-spin interaction
that isdistance dependent: the tethered spins only interact if
they are within a certain distanceR0 of each other. The
random-lattice Hamiltonian is then given by

H II52J0 (
^ i, j &
Ri j,R0

SiSj , ~6!

where^ i, j & again denotes a sum over all possible nearest
neighbors andRi j is the distance between spinsSi andSj .
Hence, in this case,R0 sets the range of interaction. The fact
that the density of the system sets another length scale leads
to a different type of coupling between the spin and the
translational degrees of freedom.

With these two models, we can address the basic issue of
how and to what extent different types of microscopic cou-
pling between the internal and translational degrees of free-
dom manifest themselves in the macroscopic thermodynamic
behavior of the systems and understand and underline the
generic physics associated with such coupling. Ising spin
transitions in these models will be of particular interest, as
the classical understanding of the critical transition in the
Ising model defined on a regular lattice provides an essential
framework of reference, with respect to which effects arising
from the interplay between the two types of degrees of free-
dom can be mapped out.

B. Model III: The Doniach model on the random lattice—
A model for lipid bilayers

Model III is, in principle, an Ising model similar to those
introduced above, but with a basic difference that one of the
spin states is assigned an internal degeneracy larger than one.
This model is inspired by aregular-latticemodel proposed
by Doniach @4# to describe the essential thermodynamic
properties of lipid bilayers, in particular the main transition,
that are primarily associated with the conformational degrees
of freedom of lipid chains in a planar array. Doniach’s model
uses two states to represent the lipid-chain conformation.
One state, the ‘‘ordered’’ state~denotedSi51), has zero
internal ~conformational! energy (Eo50) and is nondegen-
erate (Do51), characteristic of the chain conformational
state of lipid molecules in the gel phase. The other state, the
‘‘disordered’’ state~denotedSi521), has a high internal
energyEd ~corresponding to the excitation energy associated
with a conformational change! and a large degeneracy
Dd@1 ~representing the large number of possible chain con-
formations that have the same value ofEd) characteristic of
the chain conformation of lipid molecules in the liquid-
crystalline ~fluid! phase. Each chain occupies a site on a
regular triangular lattice and each state is assigned a cross-
sectional areaAo or Ad corresponding to the average area
occupied by chains in the ordered and the disordered state,
respectively. This regular-lattice model is described by the
Hamiltonian

HD5H01Vint
~1!1P(

i
HAdS 12Si

2 D1AoS 11Si
2 D J , ~7!

where

H05(
i
EdS 12Si

2 D ~8!

and

Vint
~1!52

J0
4 (

^ i, j &
~11Si !~11Sj !, ~9!

with ^ i, j & denoting a sum over nearest neighbors. In this
case,P plays the role of an internal interfacial pressure that
provides the lateral stabilizing force controlled mainly by the
hydrophobic effect at the lipid-water interface.H0 describes
the chain internal energy.Vint

(1) models the chain-chain inter-
action, which~somewhat arbitrarily! is taken to be nonzero
only if a chain and its neighbor are both in the ordered state.
Obviously, this is an approximation to the fact that the inter-
chain forces are diminished when either or both of the neigh-
boring chains are in the disordered state, but it is formally
equivalent to setting the relative energy scales of the Hamil-
tonian. The third term in Eq.~7! represents the energy cost of
stabilizing the lipid system against lateral expansion.

It is straightforward to determine the thermodynamic be-
havior of this model@4#, which is isomorphic to an Ising
model in a temperature-dependent field, i.e.,

HD5E02
J0
4 (

^ i, j &
SiSj1(

i
heff~T!Si , ~10!

where E0 is a trivial constant, heff(T)52 1
2 @Ed

1(z/2)J01PDA2kBTlnDd#, DA5Ad2Ao , andz is the co-
ordination number of the lattice (z56 for the regular trian-
gular lattice!. At low temperatures the effective field ‘‘pre-
fers’’ the chains to be in the ordered state. AsT increases,
the system crosses over from the ordered state to the disor-
dered state at a temperatureTm determined by

heff~Tm!50, ~11!

provided thatTm is less than the critical temperatureTC of
the standard Ising model. This transition is effectively a
field-induced transition below the critical temperature of the
standard Ising model and is therefore a first-order transition
usually referred to as the ‘‘chain-melting’’ transition.

While the Doniach lattice model includes the most essen-
tial physics associated with the lipid-chain conformational
degrees of freedom, it ignores the translational degrees of
freedom. We therefore propose an extension of the Doniach
model to account for the interplay between the conforma-
tional and the translational degrees of freedom in the sim-
plest way: the translational degrees of freedom of lipid
chains are governed by interchain interactions that depend on
the conformational states of the interacting chains. This ex-
tended model, which we refer to as model III, is described by
the random-latticeHamiltonian

H III5H01Vint
~1!1Vint

~2!1PA, ~12!
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where

Vint
~2!5

1

4 (
^ i, j &

V~ uRi2Rj u!~11Si !~11Sj ! ~13!

andA is the total area of the system.V(R) in Eq. ~13! is a
square-well attractive potential of depthV0 and rangeR0.
Vint
(1) andVint

(2) together provide an approximation to the at-
tractive intermolecular interaction between any two chains in
the conformationally ordered state. The sum of the hard-core
potential and the two square-well potentialsVint

(1) and Vint
(2)

constitutes an approximation to a standard intermolecular po-
tential of the Lennard-Jones type, as schematically illustrated
in Fig. 3. By analogy with the Doniach lattice model, the
effective interaction between any two chains in model III is
taken to be zero if either one or both of the chains are in the
conformationally disordered state. The square-well potential
described byR0 andV0 controls the minimum of the poten-
tial and hence the lattice parameter of the crystalline~solid!
phase. The tail of the potential extending beyondR0 permits
a possible decoupling between the two melting~or order-
disorder! processes associated with the translational and con-
formational degrees of freedom. This model is a minimal
model in the sense that it contains only the most essential
physics required to model the coupling between translational
and internal degrees of freedom in lipid-bilayer systems.

The fundamental difference between model III and the
lattice model of Doniach is that each chain in model III is
allowed to have a varying number of nearest neighbors and
varying distances from its neighbors. Furthermore, the chains
are allowed to diffuse through the whole system, as the es-
sential manifestation of translational invariance of the sys-
tem. The two sets of degrees of freedom are thus coupled in
a natural way through the intermolecular interactions. One

may expect that this model displays different types of ther-
modynamic behavior, depending on the strength of this cou-
pling.

IV. SIMULATION RESULTS AND DISCUSSION

Before proceeding to presenting the numerical results ob-
tained from the simulation studies of the models described in
the preceding section, we first give an outline of the simula-
tions themselves. All simulations were initialized using a
state where the lattice configuration was crystalline~regular
triangular! and the internal degrees of freedom were disor-
dered. This initial configuration was then equilibrated by the
Metropolis Monte Carlo algorithm to a high-temperature
state with disorder in both the translational and internal de-
grees of freedom. Equilibrium states at lower temperatures
were reached by cooling down from the high-temperature
state in small temperature steps. In each of the cooling steps,
a number of Monte Carlo updating steps@Monte Carlo steps
per particle~MCS!# were discarded before the measurement
of equilibrium thermodynamic quantities of the system was
started. The number of MCS used to reach the equilibrium
high-temperature state was between 30 000 and 50 000. The
number of MCS discarded in the subsequent temperature
steps was between 10 000 and 25 000. The measurement of
various thermodynamic quantities was performed over a
simulation period of 30 000–50 000 MCS. Among the cal-
culated quantities are the enthalpy, the area, and the spin
order parameter~the magnetization! per particle. Also calcu-
lated were the corresponding thermodynamic response func-
tions, the isobaric specific heat per particleCP , the area
compressibilityK, and the~spin! susceptibility per particle
x, which can be expressed by the fluctuation-dissipation
theorem as

CP5
^H2&2^H&2

NkBT
2 , ~14!

x5
^M2&2^M &2

NkBT
, ~15!

K5
^A2&2^A&2

kBT^A&
, ~16!

whereH is the model Hamiltonian,M the total spin order
parameter,A the total area of the system, andN the total
number of particles. Signatures of thermodynamic singulari-
ties ~or phase transitions! were identified from these mea-
sured equilibrium quantities. The phase behavior of each
model was thereby determined.

In the analysis of the simulation data for the 2D liquid-
solid transition we have, to a certain extent, used the histo-
gram method of Ferrenberg and Swendsen@21,22#. Using
this method we can extract a free-energy-like function from
the Monte Carlo simulation data. Close to the lattice-melting
transition point this free-energy function has a well-defined
double-well structure. The transition temperature can thus be
determined by using the standard technique of reweighting
@21#, and an estimate of the transition enthalpy (D^H&) can
be obtained from the position of the two equilibrium minima
of the free-energy function. We are, however, fully aware

FIG. 3. Schematic illustration of the interaction potentialV(R)
in model III. It consists of a sum of a hard-disk potential and two
square-well potentials. The hard-disk radius isd and the range and
strength of the square-well potentials are (dmax,R0) and (J0 ,V0),
respectively. The dashed line illustrates a Lennard-Jones-like poten-
tial, to which the model potential is an approximation.
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that these estimates are associated with quite substantial error
bars due to the lone Monte Carlo correlation time for the 2D
system@23# and it is therefore difficult to draw definite con-
clusions about the nature of the fluid-solid transition from
our simulations.

The presentation of the simulation results falls naturally
into three parts. The first part contains a short summary of
the results of our reexamination of the hard-disk system; the
second part gives the results of the simulation study of the
Ising models I and II; and the final part describes the results
for the extended Doniach model, model III. Each part of the
presentation is followed by a discussion of the generic phys-
ics entailed in the results.

A. Hard-disk system

As we noted in Sec. II, our random-lattice algorithm pro-
vides only an approximate description of the 2D translational
degrees of freedom. The approximation is mainly related to
the use of the constraint of maximum tether length in the
algorithm, which to some extent prevents the algorithm from
accessing theentirephase space spanned by the translational
degrees of freedom. In order to assess the validity of this
approximation, we have revisited the system of noninteract-
ing hard disks by studying the solid-liquid transition in this
system in the presence of our constraint. This solid-liquid
transition is solely driven by the configurational entropy as-
sociated with the 2D translational degrees of freedom. More-
over, a recent simulation study by Lee and Strandburg using
a full off-lattice algorithm@24# provides quantitative infor-
mation on the transitional properties and presents numerical
evidence that the transition is of first order~although this
subject still remains a contentious issue!. A numerical study
of this system using our random-lattice algorithm therefore
allows us to assess quantitatively any restrictive effect that
the constraint may have on the representation of the transla-
tional degrees of freedom. We expect that, once the con-
straint is effectively removed by allowing a large value for
the maximum tether length, our algorithm should lead to
results that are consistent with those obtained by using the
full off-lattice algorithm @24,25#.

In the following, we give a short summary of the results
for our study of the hard-disk system with the random-lattice
algorithm. A hard-disk system withN5L25122 particles
was simulated for two cases with respect to the constraint of
the maximum tether length. In the first case, a strong con-
straint was employed in the algorithm; in the second case,
this constraint was relaxed. In the case of the relaxed con-
straint the algorithm was modified to include a cell-list struc-
ture to facilitate a fast check of steric interactions between
neighboring hard disks@26#. During the simulations the
structure factor of the system was calculated as

S~kW !5K (
i
eiR

W
i•k

WL , ~17!

whereRW i is a two-dimensional vector giving the position of
disk i and ^ & denotes a thermal average. In Fig. 4S(kW ) is
shown for different values of the reduced lateral pressure
P*5Pd2/kBT, whered is the hard-disk diameter. For the
constrained case, there is a clear change in lateral order as

the value of the reduced pressure is changed from 8.75 to
9.75, as indicated in Figs. 4~a! and 4~b!. Using the reweight-
ing histogram method@21#, we have found the position of the
transition to be atP*59.15. We have also estimated the
change in the average area per molecule across the transition
to be Da5al2as.0.014, whereas( l )5(As( l ) /d

2N)(2/A3)
andAs( l ) is the total area of the solid~liquid! phase. As the
constraint on the tether length is relaxed, the lattice-melting
event shifts to a value of the reduced pressure between 8.25
and 8.75, as illustrated in Figs. 4~c! and 4~d!. Again, by
using the reweighting histogram method, the position of the
solid-fluid transition is found to be located to be at
P*58.55 and the value of the area change across the tran-
sition is estimated to beDa.0.052.

These results demonstrate that, as the constraint is re-
laxed, our simulation data converge toward the results for
P* obtained from other off-lattice studies of the hard-disk
system@24#. For example, the work reported in Ref.@24#
estimates thatP*.8.0 andDa'0.05 in the limit ofL→`.
Our results also show that the essential characteristics of the
transition remain largely intact in the random-lattice algo-
rithm, although imposing the constraint of maximum tether
length to a certain extent results in artificial changes in tran-
sition quantities, such as the small shift in the transition pres-
sure. However, since we have not in the present work per-
formed a systematic finite-size analysis or a detailed study of
the relaxation times@25#, we will not make a closer compari-
son with the results from other theoretical work on the hard-
disk melting transition.

It is, however, necessary for the discussion in the rest of
the paper that we make a remark on the nature of solid-liquid
transitions in two-dimensional systems~or 2D melting!. The
nature of 2D melting transitions has been a focal point of
numerous statistical-mechanical studies of two-dimensional
systems for the past two decades@27,28#. Two scenarios
have been presented and discussed. Halperin and Nelson,
and Young@29# developed the basic idea of Kosterlitz and
Thouless, and Berenzinskii@30# and proposed the scenario
that the 2D solid-liquid transition can proceed via two con-
tinuous ~second-order! transitions corresponding, respec-
tively, to dissociation of dislocations~the solid-hexatic tran-
sition! and dissociation of disclinations~the hexatic-liquid
transition!. A single conventional first-order transition is the
other possible scenario. Despite the significant amount of
effort devoted to resolve the issue, no final consensus has
been reached. While most Monte Carlo simulations suggest a
first-order 2D melting@24#, others suggest a one-stage con-
tinuous transition@25#. In the work presented in this paper,
where we consider the effects of coupling the translational
degrees of freedom to internal degrees of freedom of the
particles, we are inevitably confronted with this issue. Un-
fortunately, by studying a more complex model we may not
be able to provide any new information on the true nature of
the 2D melting transition. However, for all practical pur-
poses and without any restriction on the results we report
here we can consider that the melting is a first-order transi-
tion. In fact, for the models examined in this paper all the
simulation data obtained for the solid-liquid transition are
consistent with a first-order transition.
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B. Ising model I and Ising model II on the random lattice

Ising models I and II were formulated to describe two-
dimensional systems where both internal~spin! and transla-
tional degrees of freedom are present and are coupled
through microscopic interactions. Consequently, character-
ization of the phase behavior of these model systems requires
knowledge of the macroscopic behavior ofboth types of de-
grees of freedom. As the macroscopic behavior of the trans-
lational degrees of freedom is described as either solid or
liquid and that of the spin degrees of freedom is character-
ized as either~spin! ordered or~spin! disordered, each model
system can, in principle, have four different phases: a solid-
ordered~SO! phase, a solid-disordered~SD! phase, a liquid-
ordered ~LO! phase, and finally a liquid-disordered~LD!
phase. We will use this terminology below in our description
of the phase behavior of the three models of Sec. III. Our
simulation study of the models concentrates on identifying
these possible phases in parameter spaces of the models, lo-
cating the boundaries between the different phases and char-

acterizing the nature of the thermodynamic singularities as-
sociated with the phase boundaries.

For Ising model I, a convenient choice for the parameter
space is given by a reduced~or dimensionless! lateral pres-
sure, defined asPd2/J0, and a scaled temperatureT/TC ,
whereTC is the critical temperature of the spin transition in
the Ising model on the regular triangular lattice. The simula-
tion study of Ising model I was performed for a range of
values of the~reduced! lateral pressure and the~reduced!
temperature. The results show that the four phases described
above are indeed all present in the region of the parameter
space explored. Moreover, the phase boundaries separating
these four phases are simply two intersecting lines: one line
is predominantly controlled by the solid-liquid thermody-
namic singularity and is considered to be a first-order line,
and will be termed as the ‘‘lattice-melting’’ transition; the
second line is mainly associated with a critical order-disorder
transition of the spin system. Specifically, the high-
temperature phase is the LD phase, the low-temperature

FIG. 4. Contour plot of the structure factorS(kW ) in the (kx ,ky) plane calculated for the hard-disk system of sizeN5144. In ~a! and~b!
^dmax&.1.73d and d50.6. Here^ & denotes a thermal average. In~c! and ~d! ^dmax&.7d and d51.0. The value of the reduced lateral
pressure is~a! P* 5 9.75, ~b! 8.75, ~c! 8.75, and~d! 8.25. The position of the first Bragg peak is at ak value of 2p/d, which for system
~a! corresponds touku.10.5 and~c! uku.6.28.
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phase is the SO phase, the low-pressure, intermediate-
temperature phase is the LO, and finally the high-pressure,
intermediate-temperature phase is the SD phase. For low
pressures, e.g.,Pd2/J0510.0, the critical Ising spin transi-
tion has a higher temperature than the lattice-melting transi-
tion. As the pressure increases, the temperature difference
between the two transitions decreases. At the point of inter-
section, wherePd2/J0530.0, the two transitions coincide in
temperature. For higher pressures, e.g.,Pd2/J0550.0, this
ordering in temperature is reversed and the lattice-melting
transition actually has a higher temperature than the Ising
spin transition.

In order to investigate the critical behavior of the Ising
spin transition in this model and to compare it to that of the
regular-lattice Ising model, a finite-size scaling analysis of
the simulation data for this transition was carried out. Figure
5 shows the results of the analysis of three sets of simulation
data obtained for three different values of the lateral pres-

sure,Pd2/J0 5 10.0, 30.0, and 50.0, as also cited in the
preceding paragraph. The total number of particlesN5L2

varied in the finite-size scaling analysis from 64 to 400. The
finite-size scaling theory for continuous transitions leads to
the following hypothesis for scaling relations of thermody-
namic response functions with the system sizeL @31#:

xmax;Lg/n, ~18!

CP,max;La/n, ~19!

dx;L21/n, ~20!

wherexmax andCP,max are the peak values of the spin sus-
ceptibility and the specific heat for the finite-size system and
dx is the half width of the spin susceptibility curve. In our
analysis, the value ofxmax (CP,max) was taken as an average
of the maximum value of the susceptibility~the specific heat!
over five different simulation runs. The value ofdx was
taken as the average value of the half width over the five
differentx curves@32#. As it is clear from Fig. 5, the critical
exponentsg andn found from the finite-size scaling analysis
are, within the statistical error of the calculations, all consis-
tent with those of the 2D regular-lattice Ising model
(g57/4,n51) @33#. It would be much more demanding to
perform a finite-size scaling analysis of the specific heat
~data not shown! because of the very weak singularity and
the influence of a nonsingular term inCP , which cannot be
neglected at finiteL. However, theCP data for the larger
system sizes shows a fairly weak dependence ofCP,max(L)
onL, indicative of a small specific-heat exponenta;0, con-
sistent with the logarithmic singularity (a50) associated
with the regular-lattice Ising critical behavior. We thus con-
clude that, within the range of lateral-pressure values studied
in our simulation, the Ising model I defined on thedynamic
random lattice belongs to the same universality class as the
regular-lattice Ising model.

Overall, the simulation study of Ising model I shows that
there is no significant macroscopic manifestation of the mi-
croscopic coupling between the spin and the translational
degrees of freedom. This observation can be rationalized as
follows. In this model, the particle-particle interaction has no
distance dependence and the microscopic coupling between
the two types of degrees of freedom is only facilitated
through the fluctuating local connectivity of the lattice. In the
condensed systems considered here, not only are the fluctua-
tions in the local connectivity of the lattice small, but there is
also no change in the macroscopic value of the local connec-
tivity as the systems change from solid to liquid state. In
other words, the microscopic coupling does not give rise to
any strong coupling between the macroscopic behavior of
the spin and the translational degrees of freedom that could
couple or alter the characteristics of their corresponding ther-
modynamic singularities.

Ising model II describes a more complex type of micro-
scopic coupling between the spin and the translational de-
grees of freedom: in addition to the coupling through the
fluctuating local connectivity, there is also coupling through
the distance-dependent (R0) spin-spin interaction. The em-
phasis of our study of this model is to investigate whether the

FIG. 5. Finite-size scaling plots for Ising model I in the cases of
three different values ofPd2/J0. ~a! xmax;Lg/n and ~b!
dx;L21/n. The upper curve (n) corresponds toPd2/J0510.0, the
middle curve (L) to Pd2/J0530.0, and the lower curve (d) to
Pd2/J0550.0. For clarity the three curves are shifted along the
vertical axis.~a! The values for the ratio of the exponentsg and
n for the three curves are 1.7660.02, 1.7360.02, and 1.7860.05,
respectively.~b! The corresponding values of the exponent 1/n are
0.9860.04, 1.0660.06, and 1.0960.05, respectively.
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more complex microscopic coupling will lead to intricate
coupling at the macroscopic level and, in turn, to more com-
plex phase behavior.

Indeed, Ising model II was found to have more complex
phase behavior, in particular with respect to the coupling of
the degrees of freedom at the macroscopic level. Displayed
in Fig. 6 is the phase diagram for the model, given in the
same parameter space of the reduced pressure and the scaled
temperature for a fixedR0 /d51.41. The phase diagram was
obtained from simulation data and our analysis of that data.
Again, as in Ising model I, the four principal phases are all
present and the remnant of the phase diagram of Ising model
I can be seen in the low-pressure and high-pressure regions
of the parameter space, where the lattice-melting transition
and the critical spin transition are decoupled and where LO
and SD phases intervene between the SO and the LD phases.
However, the phase boundaries separating these phases no
longer consist of two intersecting lines alone: a new phase
boundary directly separating the SO and the LD phases is
now present, as indicated by the solid line between the two
special pointst1 andt2. These two points are actually critical
end points~see below! and their locations (Pd2/J0u t1535,

T/TCu t150.945) and (Pd2/J0u t2540, T/TCu t251.035), as
indicated in the phase diagram, are only estimates~which
include finite-size effects! @34#. Along this phase boundary,
which is of first order, the translational degrees of freedom
override the spin degrees of freedom and the lattice-melting
transition preempts the critical spin transition, leading to a
first-order singularity also in the spin order parameter.

Presented in Figs. 7–9 is a collection of simulation data
obtained for Ising model II, which corroborates the phase
diagram. Figure 7~a! shows the change of area~per mol-
ecule! with temperature for a set of values of pressure that
cover the parameter range we have investigated. An abrupt
~effectively discontinuous! change in the area takes place at a

specific~pressure-dependent! temperature for all the pressure
values considered. The corresponding response function, the
area compressibilityK given in Fig. 7~b!, displays the signa-
ture of the same singularity. These data are taken as the
evidence for the first-order lattice melting transition. The
critical spin order-disorder transition, existing in both the
low-pressure (P,Pt1

) and the high-pressure (P.Pt2
) re-

gions, is identified principally from the simulation data such
as those shown in Fig. 8. The temperature dependence of the
spin order parameter is given in Fig. 8~a! for a set of pressure
values. Both at low values and high values of the pressure,
the spin order parameter varies steeply, butcontinuously, at a
particular ~pressure-dependent! temperature, concomitantly
with the occurrence of a peak at the same temperature in the
spin susceptibility functionx in Fig. 8~b!. This particular
temperature is thus determined for each value of the pres-
sure, giving the location in the parameter space of the critical
spin transition. As expected, the specific heatCP , which
carries information about energy fluctuations arising from
fluctuations in both the translational and spin degrees of free-
dom, displays sharp peaks at both transitions, as Fig. 9
clearly demonstrates. The identification of the solid and liq-
uid characteristic of the phases has also been confirmed by
analysis of the structure factorS(kW ) ~data not shown!. S(kW )

FIG. 6. Phase diagram for Ising model II forR0 /d51.41. The
dashed phase boundary line (d) corresponds to the critical Ising-
like transitions from a spin-ordered~SO! to a spin-disordered~SO!
phase. The solid boundary line (s) corresponds to the first-order
lattice-melting transition from a solid phase to a liquid phase.t1 and
t2 are the two critical end points described in the text. Between the
two critical end points the spin order-disorder singularity is coupled
to the lattice melting and is of first order.

FIG. 7. ~a! AreaA per particle and~b! the corresponding area
compressibilityK of Ising model II for different values of the lat-
eral pressureP*5Pd2/J0. The system size isN5256 and
R0 /d51.41. The temperature is given in units of the critical tem-
peratureTC of the regular lattice Ising model. For clarity, theK
curves are shifted along the vertical axis by multiples of 0.005.
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has clear Bragg peaks in the solid phase and displays only
diffuse rings in the liquid phase.

The simulation data suggests that the critical temperature
of the spin transition separating the LO and the LD phases in
the low-pressure region has an observable pressure depen-
dence, whereas the temperature of the critical spin transition
separating the SO and SD phases in the high-pressure region
coincides with the critical temperature of the regular-lattice
Ising model~as expected!. In order to investigate the critical
behavior of the spin transitions in more detail in both the
low-pressure and the high-pressure regions, we have also
performed finite-size scaling analysis of the simulation data
on the spin susceptibilityx in the low-pressure region, based
on the scaling hypothesis described in Eq.~18!, and the re-
sult of the analysis is shown in Fig. 10. It is clear from this
figure that the universal Ising critical behavior is unaltered
by the fluctuations in the density~or local connectivity of the
random lattice!. On the high-pressure side of the critical end
point t2, both the universal and nonuniversal behavior of the
critical transition is expected to be identical to that of the

regular-lattice Ising model. This is confirmed by the data
shown in the inset in Fig. 8~b!, which demonstrate that, in
this pressure region, the susceptibility fits perfectly in shape
~as a function ofT) to the susceptibility of the regular-lattice
Ising model in the neighborhood of the critical temperature.

The phase boundary between the two special pointst1 and
t2 ~see Fig. 6! distinguishes the phase behavior of Ising
model II from that of Ising model I. It lies directly between
the SO and LD phases. The first-order nature of this phase
transition is indicated by the discontinuous change in the
areaA @for example, see Fig. 7~a! for Pd2/J0537.5# at the
transition temperature, and more interestingly, by a corre-

FIG. 8. ~a! Spin order parameterM and ~b! the corresponding
susceptibilityx of Ising model II for different values of the lateral
pressure P*5Pd2/J0. The system size isN5256 and
R0 /d51.41.M is shown as a function ofT/TC , whereasx is given
as a function ofT/To-d , whereTo-d is determined by the peak
position ofx. For clarity thex curves are shifted along the hori-
zontal axis. The actual peak position for the different curves are
0.825TC , 0.89TC , 0.98TC , 1.00TC , 1.03TC , 1.05TC , and
1.05TC , respectively. The inset in~b! shows a comparison between
x of the regular-lattice Ising model andx of Ising model II for
P*550.0.

FIG. 9. Specific heatCP per particle of Ising model II as a
function of T/TC for different values of the lateral pressure
P*5Pd2/J0. The system size isN5256 andR0 /d51.41. For clar-
ity theCP curves are shifted along the vertical axis by multiples of
0.025. For low values of the lateral pressureP* (P*510.0 and
P*530.0) the temperature of the critical spin transitionTo-d is
higher than the lattice-melting temperatureTs- l . At higher values of
P* (P*545.0)Ts- l is higher thanTo-d . For intermediate values of
P* (P*537.5) the two transitions are coupled andTo-d.Ts- l .

FIG. 10. Finite-size scaling plots for Ising model II for
Pd2/J0520.0.xmax is the maximum value of the spin susceptibility
and dx is the half width of thex curve. The values ofxmax and
dx were determined as described in the text. The value of the ex-
ponentg/n is 1.7660.04 and the value of the exponent 1/n is
1.0360.06.

54 6899RANDOM-LATTICE MODELS AND SIMULATION . . .



sponding sharp change in the spin order parameter@see Fig.
8~a! for Pd2/J0537.5# that is distinctly different from the
temperature dependence of the spin order parameter at lower
and higher values of the pressure. In order to demonstrate
unambiguously that the spin order-disorder singularity is a
first-order singularity, i.e., that it is slaved by the lattice
melting, we have calculated the two-dimensional histogram
P(A,M ) ~for a fixed system size!, which is displayed in Fig.
11. The statistics underlying this histogram were obtained
from 83106 MCS @35#. The histogram clearly exhibits a
two-state~spin-ordered and spin-disordered! structure, indi-
cating coexisting SO and LD phases and a finite interfacial
tension. Since the line of the critical spin transition is termi-
nated from both the low-pressure and the high-pressure sides
at t1 and t2, these two points are critical end points.

A last, but not the least important, observation we have
made from the simulation data concerns the interplay be-
tween the two types of degrees of freedom in the low-
pressure and the high-pressure regions. Although in these
regions the first-order singularity associated with the transla-
tional degrees of freedom is decoupled from the critical sin-
gularity arising from the spin degrees of freedom, as mani-
fested in the two separate transitions corresponding to the
lattice melting and the critical spin transitions, respectively,
there is evidence that the macroscopic behavior of one type
of degrees of freedom is affected by the thermodynamic sin-
gularity arising from the other. For example, the critical spin
fluctuations at the spin transitions, both in the low-pressure
region and in the high-pressure region, enhance the density
fluctuations, as indicated in Fig. 7~b! by the peaks in the area
compressibility occurring at the spin transitions~although
they are less pronounced than the peaks related to the lattice-
melting transitions!. Vice versa, at the lattice-melting transi-
tions, the spin degrees of freedom are expected to display a
weaker first-order singularity, the signature of which is too
weak to be identified unambiguously from the simulation
data.

A simple argument based on mainly mean-field consider-
ations puts all the above observations and analysis into per-
spective, in relation to the phase behavior of Ising model I.
As described in Sec. III, in Ising model II a new length scale
R0 is introduced to define the range of the spin-spin interac-
tion. It is mainly the interplay between this new length scale
and the length scalel (P) set by the density~or pressure! of
the system that gives rise to the phase behavior of Ising
model II, which is more complex than that of Ising model I.
If l (P) is always smaller thanR0, then there is no difference
between the thermal average values of the local coordination
number and the number of the interacting nearest neighbors,
whether the system is in a solid or liquid state; the phase
behavior of Ising model II is effectively the same as the
phase behavior of Ising model I. If, however,l (P) for low
pressures is larger thanR0, then the average value of the
number of interacting nearest neighbors in the liquid state
can be smaller than that in the solid state.

At very low pressures, the lattice melting takes place be-
fore any critical fluctuations in the spin degrees of freedom
set in, taking the system from the SO phase to the LO phase.
The critical spin transition occurs at a higher temperature,
well separated from the lattice-melting transition, as in Ising
model I. However, due to the reduced number of interacting
particles in this case, the transition temperature is sup-
pressed, compared to that of the solid-state critical spin tran-
sition. In this region of the phase diagram, the macroscopic
behavior of the spin degrees of freedom is expected to have
properties similar to the annealed and bond-diluted regular-
lattice Ising model at low dilution@36#. As the pressure in-
creases, the lattice-melting temperature increases and reaches
at a point (t1) the temperature of the critical spin transition,
which is still lower than the critical temperature in the solid
state. Beyond this point, the lattice-melting dictates the mac-
roscopic behavior of the spin degrees of freedom, altering it
discontinuously from the ordered state characteristic of the
solid-state spin order parameter to the disordered state de-
scribed by the bond-diluted and annealed~rather than the
solid-state! Ising model and thereby rendering it afirst-order
singularity. At pointt2, the lattice-melting temperature coin-
cides with the critical temperature of the solid-state~regular-
lattice! Ising model and the first-order singularity in the spin
degrees of freedom turns into the critical singularity again. In
the high-pressure region, the lattice-melting temperature, be-
ing bounded from below by that of the noninteracting hard-
disk system, is higher than the critical temperature for the
magnetic transition.l (P) becomes irrelevant to the critical
magnetic transition, which separates the SO and SD phases.
The phase behavior in this region is again similar to the
phase behavior of Ising model I in the high-pressure region.

C. Model III: Doniach model on the random lattice

As discussed in the Introduction and Sec. III, model III, a
Doniach model defined on the random lattice, was con-
structed as a minimal model that describes phase equilibria
in phospholipid-bilayer systems that are characterized by
translational degrees of freedom as well as internal degrees
of freedom corresponding to the different conformational
states of lipid-acyl chains. In this model, the spin degrees of
freedom represent the chain conformational degrees of free-

FIG. 11. Two-dimensional histogramP(A,M ), whereA is the
total area of the system andM is the spin order parameter, obtained
for Ising model II at parameter valuesPd2/J0537.5 and
T51.012TC , where the spin singularity is coupled to the lattice
melting. The system size isN5256. The histogram is obtained by
extrapolation from a nearby temperature using the reweighting tech-
nique of Ferrenberg and Swendsen. The sampling time to obtain the
histogram was 8 000 000 MCS.
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dom. The principal~dimensionless! parameters in the model
are Pd2/J0, R0 /d, V0 /J0, and kBT/J0 ~see Fig. 3!. Our
simulation study of the model explored the two-dimensional
parameter space spanned byV0 /J0 andkBT/J0 for fixed val-
ues of the other two parametersPd2/J050.925 and
R0 /d51.41 and the simulation results are summarized in the
phase diagram given in Fig. 12.

The topology of the phase diagram, characterized by three
phase boundaries merging into a special pointt1, a triple
point in this case, resembles the low-pressure part of the
topology of the phase diagram of Ising model II, with the
difference that the spin~or chain conformation! order-
disorder transition in this model is first order, driven by the
internal ~or conformational! entropy and thus referred to as
the chain-melting transition. This distinct topology indicates
that, again, as in Ising model II, the thermodynamic singu-
larity arising from the lattice melting can be either coupled
or decoupled from the singularity associated with the chain
melting, depending on the values of the parameters. The
three phase boundaries, all being of first order and corre-
sponding to a lattice-melting transition, a chain-melting tran-
sition, and a transition at whichbothmelting processes take
place, divide the explored region of the parameter space into
three phases: the SO, LO, and LD phases. The three insets in
the figure show, respectively, a characteristic microscopic
configuration of each phase.

Figure 13 displays a selection of the simulation data that
led to the construction of the above phase diagram. The data
shown consist of the temperature dependence of the various
thermodynamic quantities, the area per particle^A&, the area
compressibilityK, the specific heat per particleCP , and the
enthalpy per particlêH& and were obtained for a system
with N5256 particles and for the following specific values
of the model parameters: the internal entropy,s5kBlnDd
514.4kB ; the conformational energy of the chain disordered
state,Ed /J051.303; andV0 /J050.25. The data clearly in-

dicate that two distinct first-order phase transitions take place
at two different temperatures. At the lower temperature
Ts- l50.218J0 /kB , a low-enthalpy, lattice-melting transition
takes the system from the SO phase into the LO phase. At
the higher temperatureTo-d50.335J0 /kB , the chain-melting
transition changes the system from the LO phase to the LD
phase.

Our calculation also showed that in the region of the pa-
rameter space where the two melting processes are decou-
pled, i.e.,V0 /J0,V0 /J0u t1, the temperature of the chain-

melting transition To-d actually depends on the model
parameters in a rather simple way. Explicitly,To-d can be
determined as the solution to the equation

2
1

2 FEd1
^zi&
2

~J01^qi&V0!2kB /To-dlnDdG1PD^A&50,

~21!

where^zi& is the mean value of the local coordination num-
ber of the dynamic lattice andD^A& is the change in the
surface area per particle as the system undergoes the spin

FIG. 12. Phase diagram for the extended Doniach model, model
III. All three phase boundaries are first-order phase boundaries. The
insets show snapshots of typical microconfigurations for the three
different phases labeled SO~solid-ordered!, LD ~liquid-disordered!,
and LO ~liquid-ordered!. Chains in the disordered state are plotted
ass and chains in the ordered chain state asd. The three snap-
shots are not given to scale. In comparison with experiments the
SO-LO phase line is interpreted as the submain phase transition and
the LO-LD phase line as the main phase transition in long-chain
phospholipid bilayers.t1 is the triple point described in the text.

FIG. 13. Simulation data of the extended Doniach model, model
III, for a system size of N5256 and parameter values
Pd2/J050.925,V0 /J050.25, andR0 /d51.41. ~a! shows the area
per particleA (n) and the area compressibilityK (d). ~b! shows
the heat capacity per particleCP . The inset in~b! shows the full
scale curves for the heat capacity (s) and the enthalpy per particle
~- - -!. To-d is identified as the chain melting transition andTs- l as
the submain transition in long-chain phospholipid bilayers.

54 6901RANDOM-LATTICE MODELS AND SIMULATION . . .



order-disorder transition.̂qi& is the mean fraction of the
nearest-neighbor pairs that interact with the strength of the
deeper square well, a quantity that most significantly reflects
the interplay between the translational and the chain-
conformational degrees of freedom. It is rather straightfor-
ward to understand this result. The Hamiltonian of model III,
as defined in Eq.~12!, can be written as a~diluted! Ising
model in an external temperature-dependent field, similar to
the original Doniach lattice model, except that the field,
which depends onzi andqi as

h~ i !eff~T!52
1

2 FEd1
zi
2

~J01qiV0!2kB /To-dlnDdG ,
~22!

becomes afluctuatingquantity of the random lattice through
the fluctuations inzi andqi . For the systems simulated with
periodic boundary conditions, the local coordination number
zi is conserved on average, i.e.,^zi&56. Furthermore, for a
condensed 2D liquid system,zi was found to have a very
narrow distribution around 6. Similarly, the fluctuations of
qi about its mean value were also found to be small. Hence
the chain-melting transition temperature is very well ap-
proximated by the temperature set by the condition
^heff(To 2d)&1PD^A&50, which is simply that given by Eq.
~21!. For small values ofV0 /J0 the gap between the SO-LO
and the LO-LD phase boundaries is quite large and the LO
states close to the chain-melting transition contain many
‘‘defects,’’ interacting pairs having interparticle distances
larger thanR0 and hence has a rather small value of^qi&. For
instance, forV0 /J050.25, we find^qi&50.77 for the LO
states just below the chain-melting transition. As we move
closer tot1 the number of the defects in the LO states de-
creases and forV0 /J050.625 we find^qi&50.96. Beyond
the triple pointV0 /J0u t1 the low-temperature phase remains
crystalline ordered, due to the strong interactions imposed by
larger values ofV0, and the number of pair defects is essen-
tially zero. An increase in temperature leads to the chain-
melting process, which renders the particle-particle interac-
tion ineffective and consequently brings about the lattice-
melting process. Thus the phase boundary is essentially
determined by the chain-melting process, for which Eq.~21!,
with ^qi&51, still gives a largely valid description.

The enthalpy change across the lattice-melting transition
can be found from the enthalpy histogram at the transition
temperature. An estimate of the enthalpy change per particle
DHs- l leads to a value of approximately 0.35kB per particle
for the corresponding entropy changeDSs- l . In contrast, the
chain-melting transition exhibits a very large latent heat, cor-
responding to an entropy change per particle of approxi-
mately 14kB . The heat content in the lattice melting is thus
only a few percent of the heat content in the spin order-
disorder transition for the chosen set of model parameters.

The dependence of the lattice-melting transition tempera-
ture onV0 /J0 is apparent in the phase diagram. The transi-
tional entropy also was found to have a systematic depen-
dence on the parameter. As the value ofV0 /J0 is increased
from below towards the triple-point value, the simulation
data given in Fig. 14 shows a steady increase inDSs- l with
the parameter value.

Our study of model III predicts for lipid-bilayer systems a
rather generic picture of the phase behavior or, more specifi-
cally, of the mode in which the chain conformational and
molecular translational degrees of freedom are coupled at
macroscopic level. In particular, it is shown that the loss of
the lateral~or in-plane! ordering, represented by the lattice-
melting transition, can take place without the complete loss
of the collective ordering in chain conformations; conse-
quently, an intermediate phase, the LO phase, can exist@37#.
There is noa priori reason why the lattice-melting transition
and the chain-melting transition should synchronize, al-
though it is generally accepted that the main transition in
phospholipid bilayers involves both the lattice-melting and
the chain-melting processes.

In a recent high-sensitivity calorimetric study by
Jo”rgensen@40#, a distinct submain transition was discovered
to be present in fully hydrated multilamellar bilayers of long-
chain lipids in the homologous series of di-acyl phosphati-
dylcholines DCnPC, with 17<n<20. The experimental data
show that the entropy change per lipid molecule across this
submain transitionDSsm is very small, being in the range
between 0.22kB and 0.56kB . Our model calculation offers an
interpretation of this recently discovered submain transition
as a decoupling of the lattice-melting transition from the
chain-melting transition. As we have discussed in a recent
paper @41#, the latent heat or, correspondingly, the transi-
tional entropy predicted by our study of model III for the
lattice-melting transition compares favorably with the ex-
perimental data for the submain transition. This may imply
that model III, despite its simplicity, has captured some of
the essential mechanisms underlying the interplay between
the chain conformational and the translational degrees of
freedom in lipid-bilayer systems.

V. CONCLUSION

Motivated by the rich phase behavior of lipid-bilayer sys-
tems, the work reported in this paper has focused on inves-
tigating the equilibrium thermodynamic behavior in two-
dimensional condensed many-particle systems where both
translational and internal degrees of freedom are present and

FIG. 14. Entropy change at the lattice-melting~or submain!
transitionDSs- l for different values of the model parameterV0 /J0
in model III ~see Fig. 12!. The inset gives the corresponding values
of the transitional enthalpyDHs- l .
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are coupled through microscopic interactions. To this end,
we first developed a random-lattice description of two-
dimensional translational degrees of freedom. We then for-
mulated, and studied using computer-simulation techniques,
a series of three statistical-mechanical models, which de-
scribe the internal degrees of freedom essentially as the stan-
dard Ising model does the spin degrees of freedom, but have
different emphasis and levels of complexity in the descrip-
tion of the coupling microscopic between the translational
and internal~spin! degrees of freedom. These models were
shown to lead to quite rich phase behavior, although they
describe only microscopic interactions that are simple and
generic. The most important feature in the phase behavior of
these models is that, depending on the model parameters,
thermodynamic singularities associated with the internal de-
grees of freedom can be either coupled to or decoupled from
a first-order thermodynamic singularity in the collective be-
havior of the translational degrees of freedom that corre-
sponds to a lattice-melting process, manifesting at the mac-
roscopic level the interplay between the two types of degrees
of freedom. In particular, as in Ising model II, when the
internal degrees of freedom are strongly coupled to the trans-
lational degrees of freedom macroscopically, their order-
disorder singularity is slaved by the first-order singularity of
the lattice melting and becomes first order, in contrast to the
critical singularity they exhibit when the coupling is weak at
the macroscopic level. It is further shown that in the case of
weak coupling, the universal critical behavior of the internal
degrees of freedom remains unchanged and, in fact, is in the
same universality class as the regular-lattice Ising model.
Finally, we have discussed the prediction of one of the mod-
els, model III, in relation to a recent experimental observa-
tion of a ~submain! phase transition in phospholipid-bilayer
systems.

We conclude the paper with a final remark on the prospect
of the type of random-lattice models as proposed in the pa-
per. The formulations of such models are general and may be
applied to any two-dimensional condensed systems where
different types of degrees of freedom are present and rel-
evant. In particular, this approach may open up new possi-
bilities in studies of structural and thermodynamic properties
of complex systems such as multicomponent lipid
bilayers—a highly biologically relevant example being lipid-
cholesterol mixtures@42#—and lipid-protein systems.
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APPENDIX: TECHNICAL REMARKS
ON THE ALGORITHM

This appendix contains a few remarks on the technical
details of the implementation of the random-lattice algorithm
described in Sec. II. The first remark concerns the question
of how we establish a nearest-neighbor structure that is con-
venient for treatment of 2D systems of particles with short-
range interactions. In off-lattice simulations, in contrast to
lattice simulations, there exists no unique definition of near-
est neighbors. The usual definition is the set of particles that
lie within a certain distance of a given particle. The nearest-
neighbor structure we have used differs from those con-
structed via other schemes of tessellation, e.g., Voronoi tes-
sellation and Delauney and Dirichlet triangulation, of
microscopic configurations of hard disks@43#. The local con-
nectivity of our random lattice is constrained since the lattice
is composed of hard disks of diameterd, connected by teth-
ers that do not exceed a maximum lengthdmax. If dmax is
within the ranged–A3d, the link structure of the network
provides an easy access to local distribution of particles and
a good representation of a nearest-neighbor structure. Since
dmax is rescaled during the simulation,dmax/d can sometimes
exceedA3 as the simulation proceeds. However, with an
appropriately chosen range of values for the lateral pressure
P, those configurations will have negligible effect on the
thermodynamic properties of the system.

The second remark relates to a situation that could, in
principle, arise, where the link structure cannot be directly
used to represent the local particle distribution. To illustrate
the situation, we define an inside-outside orientation of a
triangular surface element by associating with it a normal
vector. If dmax/d<A3, the sense of local orientation of any
triangular element of the network stays the same throughout
a simulation. Thus an inside-outside orientation across the
whole surface is well defined. If, however,dmax/d.A3, a
random move that changes the local orientation of a triangu-
lar element, leading to local overlapping of triangles, then
becomes possible, as depicted in Fig. 15. Such moves are

FIG. 15. Move from configuration~a! to configuration~b! that
changes the orientation of the surface normal. The local orientation
of the random lattice is indicated by the arrows on the tethers.

FIG. 16. Extreme situation that may occur whendmax/d.A3.
Hard disks are shown as circles and tethers between disks are
shown as solid lines. Whendmax/d5A3 two disks that are not
connected by a tether can actually have a distance~shown by the
dashed line! that is equal tod, the hard-disk diameter. When
dmax/d.A3 the distance between nonconnected hard disks can be
less thand.
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excluded in the simulation algorithm; only those moves that
preserve the inside-outside orientation of the surface are ac-
cepted.

The last remark deals with the practical implementation of
the hard-disk condition for the particles. A rigorous imple-
mentation of the condition would, in principle, require build-
ing up a cell structure that encompasses the whole system
@26#. However, such a procedure would require a consider-
able amount of computing time and would significantly re-
duce the efficiency of the algorithm. We have therefore em-
ployed a faster, although not as rigorous, method by which
we only check those particles that are directly linked by one
tether and those that are connected by two successive tethers.

If dmax/d.A3 it is obviously not sufficient only to check
whether the hard-disk condition is violated by particles that
are linked by tethers, since the random moves of particles
can lead to situations where two particles are physically
closer than the distance of the hard-disk diameterd without
being connected by a tether~see Fig. 16!. By extending the
check for violation of the hard-disk condition to particles
connected by two successive tethers we can, provided that
dmax/d is not too much larger thanA3, ensure that no two
particles violate the hard-disk condition. As an example, we
have found that fordmax/d51.85 only approximately 1 in
10 000 microconfigurations violates the hard-disk condition.
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